A linear functional on a vector space $V$ over a field $\F $ is a linear function from $V$ to $\F $. In other words, a linear function is an element of $\mathcal{L} (V, \F )$.
We tend to denote linear functionals by $\phi : V \to \F $, a mnemonic for functional.
\[ \phi (x, y, z) = 4x - 5y + 2z \]
$\phi $ is a linear function on $\R ^3$\[ \phi (x_1, \dots , x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n \]
where $c_1, \dots , c_n \in \C $. $\phi $ is a linear functional on $\C ^n$.\[ F_c((x_n)_{n \in \N }) = \sum_{n = 1}^{\infty} c_n x_n. \]
\[ \phi (p) = 3p''(5) + 7p(4) \]
$\phi $ is a linear functional on $\mathcal{P} (\R )$.\[ \phi (p) = \int _{[0,1]} p \]
$\phi $ is a linear functional on $\mathcal{P} (\R )$.