\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Functionals
Complex Numbers
Sequence Spaces
Second Derivatives
Needed by:
Continuous Linear Functionals
Dual Vector Spaces
Inner Product Representations of Linear Functionals
Links:
Sheet PDF
Graph PDF

Linear Functionals

Definition

A linear functional on a vector space $V$ over a field $\F $ is a linear function from $V$ to $\F $. In other words, a linear function is an element of $\mathcal{L} (V, \F )$.

Notation

We tend to denote linear functionals by $\phi : V \to \F $, a mnemonic for functional.

Examples

  1. Define $\phi : \R ^3 \to \R $ by

    \[ \phi (x, y, z) = 4x - 5y + 2z \]

    $\phi $ is a linear function on $\R ^3$
  2. Define $\phi : \C ^n \to \C $ by

    \[ \phi (x_1, \dots , x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n \]

    where $c_1, \dots , c_n \in \C $.
    $\phi $ is a linear functional on $\C ^n$.
  3. Let $(c_n)_{n \in \N } \in \ell ^{\infty}$. Define $F_c: \ell ^1 \to \C $ by

    \[ F_c((x_n)_{n \in \N }) = \sum_{n = 1}^{\infty} c_n x_n. \]

  4. As usual, denote the set of real polynomials by $\mathcal{P} (\R )$. Define $\phi : \mathcal{P} (\R ) \to \R $ by

    \[ \phi (p) = 3p''(5) + 7p(4) \]

    $\phi $ is a linear functional on $\mathcal{P} (\R )$.
  5. As usual, denote the set of real polynomials by $\mathcal{P} (\R )$. Define $\phi : \mathcal{P} (\R ) \to \R $ by

    \[ \phi (p) = \int _{[0,1]} p \]

    $\phi $ is a linear functional on $\mathcal{P} (\R )$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view