\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Order
Needed by:
Complete Fields
Lattices
Real Limiting Bounds
Supremum Norm
Links:
Sheet PDF
Graph PDF

Least Upper Bounds

Definition

Suppose $(A, \leq)$ is a partially ordered set.

An upper bound for $B \subset A$ is an element $a \in A$ so that $b \leq a$ for all $b \in B$. A set is bounded from above if it has a least upper bound. A least upper bound for $B$ is an element $c \in A$ so that $c$ is an upper bound and $c < a$ for all other upper bounds $a$.

If there is a least upper bound it is unique.1
We call the unique least upper bound of a set (if it exists) the supremum.

Notation

We denote the supremum of a set $B \subset A$ by $\sup A$.


  1. Proof in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view