\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Chordal Graphs
Needed by:
None.
Links:
Sheet PDF
Graph PDF

K-Trees

Why

We generalize trees and discuss an example of chordal graphs.1

Definition

Let $k \in \N $. A $k$-tree is defined indirectly. Let $G = (V, E)$ be a a complete graph and $\nu m{V} = k$.

The complete graph on $ If $ A $k$-tree is an undirected graph with at least $k$ vertices. The only $k$-tree with $k$ vertices is the complete graph.

Chordality

All $k$-trees are chordal.

Induction on $k$-tree with $k$ vertices.


  1. Future editions will modify, and may introduce $k$-trees without chordal graphs. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view