We can characterize the dependence of two events in terms of the rank of a particular matrix.
Given a probability measure $\mathbfsf{P} :
\powerset{\Omega } \to \R $ on the finite set
$\Omega $ and two events $A, B \subset \Omega $,
the joint probability
matrix of $A$ and $B$ is the matrix
\[
M = \bmat{
\mathbfsf{P} (A \cap B) & \mathbfsf{P} (A \cap
\relcomplement{B}{\Omega }) \\
\mathbfsf{P} (\relcomplement{A}{\Omega } \cap B) &
\mathbfsf{P} (\relcomplement{A}{\Omega } \cap
\relcomplement{B}{\Omega }) \\
}.
\]
If $A$ and $B$ are independent, then so are
$A$ and $\relcomplement{B}{\Omega }$, $B$ and
$\relcomplement{A}{\Omega }$, and
$\relcomplement{A}{\Omega }$
and$\relcomplement{B}{\Omega }$.
In other words,
\[
M = \bmat{\mathbfsf{P} (A) \\
\mathbfsf{P} (\relcomplement{A}{\Omega }) }\bmat{\mathbfsf{P} (B) &
\mathbfsf{P} (\relcomplement{B}{\Omega }}.
\]
Conversely, suppose $\rank(M) = 1$.
Then, using the law of total probabiliy, each
row is a multiple of
\[
M1 = \bmat{\mathbfsf{P} (A) \\
\mathbfsf{P} (\relcomplement{A}{\Omega })} .
\] \[
\mathbfsf{P} (A \cap B) +
\mathbfsf{P} (\relcomplement{A}{\Omega } \cap B) =
\alpha (\mathbfsf{P} (B) + \mathbfsf{P} (\relcomplement{A}{\Omega })),
\]