\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrix Rank
Independent Events
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Joint Probability Matrices

Why

We can characterize the dependence of two events in terms of the rank of a particular matrix.

Definition

Given a probability measure $\mathbfsf{P} : \powerset{\Omega } \to \R $ on the finite set $\Omega $ and two events $A, B \subset \Omega $, the joint probability matrix of $A$ and $B$ is the matrix

\[ M = \bmat{ \mathbfsf{P} (A \cap B) & \mathbfsf{P} (A \cap \relcomplement{B}{\Omega }) \\ \mathbfsf{P} (\relcomplement{A}{\Omega } \cap B) & \mathbfsf{P} (\relcomplement{A}{\Omega } \cap \relcomplement{B}{\Omega }) \\ }. \]

Characterization of independence

If $A$ and $B$ are independent, then so are $A$ and $\relcomplement{B}{\Omega }$, $B$ and $\relcomplement{A}{\Omega }$, and $\relcomplement{A}{\Omega }$ and$\relcomplement{B}{\Omega }$. In other words,

\[ M = \bmat{\mathbfsf{P} (A) \\ \mathbfsf{P} (\relcomplement{A}{\Omega }) }\bmat{\mathbfsf{P} (B) & \mathbfsf{P} (\relcomplement{B}{\Omega }}. \]

In this case, we see that $\rank(M) = 1$.

Conversely, suppose $\rank(M) = 1$. Then, using the law of total probabiliy, each row is a multiple of

\[ M1 = \bmat{\mathbfsf{P} (A) \\ \mathbfsf{P} (\relcomplement{A}{\Omega })} . \]

In particular, we have $\mathbfsf{P} (A \cap B) = \alpha \mathbfsf{P} (A)$ and $\mathbfsf{P} (\relcomplement{A}{\Omega } \cap B) = \alpha P(\relcomplement{A}{\Omega })$. So

\[ \mathbfsf{P} (A \cap B) + \mathbfsf{P} (\relcomplement{A}{\Omega } \cap B) = \alpha (\mathbfsf{P} (B) + \mathbfsf{P} (\relcomplement{A}{\Omega })), \]

from which we deduce $\alpha = \mathbfsf{P} (B)$
Likewise, the multiplier for the second column of $M$ is $\mathbfsf{P} (\relcomplement{B}{\Omega })$. In other words, $A$ and $B$ are independent. We conclude that $A$ and $B$ are independent if and only if $\rank(M) = 1$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view