\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Cumulative Distribution Functions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Joint Cumulative Distribution Functions

Definition

Let $X, Y: \Omega \to \R $ be random variables on probability space $(\Omega , \mathcal{F} , \mathbfsf{P} )$. The joint cumulative distribution function denoted $\rvcdf{X,Y}: \R ^2 \to [0, 1]$ is defined by $\rvcdf{X,Y}(s,t) = \mathbfsf{P} [X \leq s, Y \leq t]$.

In general the joint cdf for a random vector $X: \Omega \to \R ^n$ is $\rvcdf{X}: \R ^d \to [0,1]$ defined by $\rvcdf{X}(t) = \mathbfsf{P} [X \leq t]$ where $x \leq t$ means $x_i \leq t_i$ for all $i$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view