\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Extended Real Numbers
Iterated Rectangular Integrals
Negligible Sets
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Iterated Integrals

Why

We integrate over a product space by integrating one coordinate at a time.

Result

Suppose $(X, \mathcal{A} , \mu )$ and $(Y, \mathcal{A} , \nu )$ are $\sigma $-finite measurable spaces. Let $f: X \times Y \to \Rbar$ be $\mathcal{A} \times \mathcal{B} $-measurable and $\mu \times \nu $-integrable. Then
  1. For $\mu $-almost every $x$ in $X$ the section $f_x$ is $\nu $-integrable and for $\nu $-almost every $y$ in $Y$ the section $f^y$ is $\mu $-integrable,
  2. the functions $I_f$ and $J_f$ defined by

    \[ I_f(x) = \begin{cases} \int _{Y} f_x d\nu &\text{ if } f_x \text{ is } \nu \text{-integrable}, \\ 0 & \text{ otherwise} \end{cases} \]

    and

    \[ J_f(y) = \begin{cases} \int _{X} f^y d\mu &\text{ if } f^y \text{ is } \mu \text{-integrable}, \\ 0 & \text{ otherwise} \end{cases} \]

    belong to $\mathcal{L} (X, \mathcal{A} , \mu , \R )$ and $\mathcal{L} (Y, \mathcal{A} , \nu , \R )$ respectively, and
  3. the relation

    \[ \int _{X \times Y} f d(\mu \times \nu ) = \int _{X} I_f d\mu = \int _{Y} J_f d\nu \]

    holds.

The above is called Fubini's Theorem. Next: Tonelli's theorem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view