\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Relation Composites
Converse Relations
Equivalence Relations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Inverses of Composite Relations

Why

How do inverse and converse relations interact.

Results

Let $R$ be a relation between $X$ and $Y$ and let $S$ be a relation between $Y$ and $Z$.

$(RS)^{-1} = S^{-1}R^{-1}$

Identity relations

Recall that $I$ is the identity relation on $X$ if $x\,I\,y$ if and only if $x = y$.

Let $R$ be a relation on $X$. Let $I$ be the identity relation on $X$. Then $RI = IR = R$.

One would like $RR^{-1} \supset I$, $R^{-1}R \supset I$. The father of the son is the father and the son of the father is the son. But the empty relation violates these claims.

Relation properties

$R$ is symmetric if and only if $R \subset R^{-1}$
$R$ is reflextive if and only if $I \subset R$
$R$ is transitive if and only if $RR \subset R$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view