\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Intervals
Needed by:
Absolute Value
Length Common Notions
Plane Distance
Links:
Sheet PDF
Graph PDF

Interval Length

Why

Toward defining the length of a subset of real numbers, we start by defining the length of an interval.

Definition

The length of an interval is the difference of its endpoints: the larger less the smaller.

Notation

Let $a, b$ be real numbers which satisfy the relation $a < b$. The length of $(a, b)$, $[a, b]$ $[a, b)$ and $(a, b]$ is, in each case, $b - a$.

For example, the length of the interval $(0, 1)$ is 1.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view