\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Absolute Value
Integrable Function Space
Complex Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Integrable Function Spaces

Why

We have seen that the integrable functions form a vector space. How about the square integrable functions? And so on.1

Definition

The integrable function spaces are a collection of function spaces, one for each real number $p \geq 1$, for which the $p$th power of the absolute value of the function is integrable.2

Notation

Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $p \geq 1$. We denote the integrable function space corresponding to $p$ by $\mathcal{L} ^p(X, \mathcal{A} , \mu , \R )$. We have defined it by

\[ \mathcal{L} ^p(X, \mathcal{A} , \mu , \R ) = \Set*{ \text{ measurable } f: X \to \R }{ \int \abs{f}^p d\mu < \infty } \]

Let $\C $ denote the set of complex numbers. Similarly for complex-valued functions, we denote the $p$th space by $\mathcal{L} ^p(X, \mathcal{A} , \mu , \C )$.


  1. Future sheets are likely to begin with $L^2$. ↩︎
  2. Future editions will include the case where $p = \infty$. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view