\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Integer Numbers
Natural Products
Needed by:
Integer Arithmetic
Integer Powers
Rational Order
Rational Products
Sheet PDF
Graph PDF

Integer Products


We want sums to follow those of natural numbers.1


Consider $\eqc{(a, b)}, \eqc{(b, c)} \in \Z $. The integer product of $\eqc{(a, b)}$ with $\eqc{(b, c)}$ is $\eqc{(ac + bd, ad + bc)}$.2


We denote the product of $\eqc{(a, b)}$ and $\eqc{(c, d)}$ by $\eqc{(a, b)} \cdot \eqc{(b, c)}$ So if $x, y \in \Z $ then the sum of $x$ and $y$ is $x\cdot y$. As with natural products, we often drop the $\cdot $ and write $xy$ for $x\cdot y$.

  1. Future editions will modify this. ↩︎
  2. One needs to show that this is well-defined. The account will appear in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view