\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Integer Products
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Integer Powers

Why

1

Definition

Let $a \in \Z $ and let $p \in \N $. Define the first power of $a$ to be $a$. Define the second power of $a$ to be $a^2$. Define the $p$th power of a for $p \geq 2$ to be $a^p = aa^{p-1}$.

Negative powers

Let $a \in \Z $ and let $p \in \Z $ with $p < 0$. Then define $a^{p}$ to be $1/a^{-p}$. Since $p$ is negative, $-p$ is positive and so we have defined $a^{-p}$.

Zero

Define $a^0 = 1$.


  1. Future editions will include. This sheet include only a very basic outline of a few definitions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view