\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Integer Parts

Definition

Suppose $x \in \R $ is a real number. The lower integer part (or floor) of $x$ is the largest integer $a \in \Z $ satisfiying $a \leq x$. Similarly the upper integer part of $x$ is the smallest integer $b \in \Z $ such that $x \leq b$

Notation

Suppose $x \in \R $. We denote the lower and upper integer parts of $x$ by

\[ \floor{x} \quad \text{ and } \quad \ceil{x} \]

respectively.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view