\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Numbers
Equivalence Relations
Needed by:
Decision Problems
Digital Integers
Integer Order
Integer Products
Integer Sums
Links:
Sheet PDF
Graph PDF

Integer Numbers

Why

We want to subtract numbers.1

Definition

Consider the set $\omega \times \omega $. This set is the set of ordered pairs of $\omega $. In other words, the ordered pairs of natural numbers.

We call two such pairs $(a, b)$ and $(c, d)$ of $\omega \times \omega $ integer equivalent if

\[ a + d = b + c \]

Briefly, the intuition is that $(a, b)$ represents $a$ less $b$, or in the usual notation “$a - b$”.2 So this equivalence relation says these two are the same if $a - b = c - d$. Rearranging gives $a + d = b + c$.

Integer equivalence is an equivalence relation.3

The set of integer numbers is the set of equivalence classes (see Equivalence Relations) under integer equivalence on $\omega \times \omega $. We call an element an integer number (or integer).

Notation

We denote the set of integers by $\Z $. If we denote integer equivalence by $\sim$ then $\Z = (\omega \times \omega )/\mathord{\sim}$. Other notation for $\Z $ includes $\mathbb{Z}$.


  1. Future editions will change this why. In particular, by referencing Inverse Elements and the lack thereof in $\omega $. ↩︎
  2. This account will be expanded in future editions. ↩︎
  3. The proof is straightforward. It will be included in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view