Integer Arithmetic and Order
Why
How does arithmetic interact with integers.
Results
We can show the following.
Let $a, b, c, d \in \Z $.
If $a \leq b$ and $c \leq d$, then $a + b
\leq c + d$.
Let $a, b, c, d \in \Z $ with $a, b \geq
0_{\Z }$.
If $a \leq b$ and $c \leq d$, then $a \cdot
c \leq a \cdot d$.