\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Inner Products
Complex Inner Products
Needed by:
Inner Product Representations of Linear Functionals
Nonnegative Operators
Polyhedra
Links:
Sheet PDF
Graph PDF
Wikipedia

Inner Products

Why

We abstract the notion of inner product to an arbitrary vector space.

Definition

Suppose $\F $ is a field which is either $\R $ or $\C $. Let $(V, \F )$ be a vector space. Then a function $f: V \times V \to \F $ is an inner product on $V$ if

  1. $f(x, x) \geq 0$, $f(x, x) = 0 \Leftrightarrow x = 0$;
  2. $f(x, y) = \overline{f(y, x)}$
  3. $f(ax + by, z) = a(x, z) + b(y, z)$
A inner product space (or pre-Hilbert space) is a tuple ($V, f)$ where $V$ is an inner product space over $\F $ and $f: V^2 \to \F $ is an inner product.

Notation

Suppose $V$ is a vector space over the field $\F $. We regularly denote an arbitrary inner product for $V$ by $\ip{\cdot ,\cdot }: V^2 \to \F $. So we would denote the inner product of the vector $x$ with the vector $y$ by $\ip{x, y}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view