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INNER PRODUCT LINEAR FUNCTIONAL REPRESENTATIONS

Why

We can identify any linear functional F : Rn → R with a vector y ∈ Rn so

that F (x) = ⟨x, y⟩. We generalize this result to complete inner product

spaces.

Motivating result

The following is known as the Riesz representation theorem (or Riesz-

Fréchet representation theorem, or Riesz theorem, or Riesz-Fréchet theo-

rem).

Proposition 1. Let ((V, k), ⟨·, ·⟩) be a complete inner product space and

let F : V → k be a continuous linear functional on V . There exists a

unique y ∈ V so that

F (x) = ⟨x, y⟩

for all x ∈ V . Moreover ∥y∥ = ∥F∥∗.

Clearly Rn is a complete inner product space, and so this this theorem

says the expected. We can identify linear functionals on Rn with elements

(vectors) in Rn.1

1Future editions will expand further.
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