\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Equality Constrained Space Optimization Problems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Inequality Constrained Space Optimization Problems

Definition

An optimization problem is $(X, f)$ is an inequality constrained space optimization problem if $X \subset \R ^n$, $f: \R ^n \to \R $, and there exists $g: \R ^n \to \R ^m$ so that

\[ X = \Set{x \in \R ^n}{g(x) \leq 0} \]

For this reason, $(f, g)$ is sometimes called the problem data (abstract problem data) of the problem.

Notation

We often write such problems as: given $f: \R ^n \to \R $ and $g: \R ^n \to \R ^m$, find $x \in \R ^n$ to

\[ \begin{aligned} \text{minimize} & \quad f(x) \\ \text{subject to} & \quad g(x) \leq 0 \\ \end{aligned} \]

Some authors abbreviate inequality constrained space optimization problem as ICP.

Handles equality constraints

Suppose $f: \R ^n \to \R $ and $h: \R ^n \to \R ^m$ are the (abstract) problem data for an equality constrained space optimization problem. Define $g: \R ^n \to \R ^{2m}$ so that

\[ g(x) = (h(x), -h(x)) \quad \text{for all } x \in \R ^n \]

Then the ECP $(f, h)$ and ICP $(f, g)$ have the same feasible set and optimal solutions. In other words, given an equality constrained problem we can always write it as an inequality constrained problem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view