An optimization problem is $(X, f)$ is an
inequality constrained space
optimization problem if $X \subset \R ^n$,
$f: \R ^n \to \R $, and there exists $g: \R ^n
\to \R ^m$ so that
\[
X = \Set{x \in \R ^n}{g(x) \leq 0}
\]
We often write such problems as: given $f:
\R ^n \to \R $ and $g: \R ^n \to \R ^m$, find
$x \in \R ^n$ to
\[
\begin{aligned}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) \leq 0 \\
\end{aligned}
\]
Suppose $f: \R ^n \to \R $ and $h: \R ^n \to
\R ^m$ are the (abstract) problem data for an
equality constrained space optimization
problem.
Define $g: \R ^n \to \R ^{2m}$ so that
\[
g(x) = (h(x), -h(x)) \quad \text{for all } x \in \R ^n
\]