\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Sigma Algebras
Independent Events
Probability Measures
Needed by:
Independent Event Sigma Algebras
Independent Random Variables
Links:
Sheet PDF
Graph PDF

Independent Sigma Algebras

Definition

Given a probability space $(\Omega , \mathcal{F} , \mathbfsf{P} )$, a sequence of $\mathcal{G} _1, \dots , \mathcal{G} _n$ of sub-$\sigma $-algebras of $\mathcal{F} $, are independent if

\[ \textstyle \mathbfsf{P} (A_1 \cap A_2 \cap \cdots \cap A_n) = \prod_{i = 1}^{n} \mathbfsf{P} (A_i) \]

for any $A_1 \in \mathcal{G} _1$, $A_2 \in \mathcal{G} _2$, $\dots $, $A_n \in \mathcal{G} _n$. A family $\set{\mathcal{G} _i}_{i \in I}$ is a family of sub-$\sigma $-algebras of $\mathcal{F} $ is independent if any finitely many of them are independent.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view