Given a probability space $(\Omega ,
\mathcal{F} , \mathbfsf{P} )$, a sequence of
$\mathcal{G} _1, \dots , \mathcal{G} _n$ of
sub-$\sigma $-algebras of $\mathcal{F} $, are
independent if
\[
\textstyle
\mathbfsf{P} (A_1 \cap A_2 \cap \cdots \cap A_n) = \prod_{i
= 1}^{n} \mathbfsf{P} (A_i)
\]