The event sigma algebra of $A \in \mathcal{F} $ where $(\Omega , \mathcal{F} )$ is a measurable space is the set sub-$\sigma $-algebra $\set{\varnothing, A, A^c, \Omega }$.
A family of events events are independent if the event sigma algebras are independent.
Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $A \in \mathcal{A} $ be an event. The sigma algebra generated by $A$ is $\set*{\varnothing, A, X - A, X}$. We denote it by $\sigma (A)$.
Let $B \in \mathcal{A} $. If $A$ is independent of $B$ we write $A \perp B$.
Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $A, B \in \mathcal{A} $.
$(\Rightarrow)$ If $A \perp B$, then by
definition $A \in \sigma (A)$ and $B \in
\sigma (B)$ and so:
\[
\mu (A \cap B) = \mu (A)\mu (B).
\]
$(\Leftarrow)$ Conversely, let $a \in
\sigma (A)$ and $b \in \sigma (B)$.
If $a = \varnothing$ or $b = \varnothing$
then $a \cap b = \varnothing$.
So
\[
\mu (a \cap b) = \mu (\varnothing) = \mu (a)\mu (b),
\] \[
\mu (a \cap b) = \mu (b) = \mu (a)\mu (b),
\]
So it remains to verify $\mu (a \cap b) =
\mu (a)\mu (b)$ for the cases $a \in \set{A,X
-A}$ and $b \in \set{B, X-B}$.
If $a = A$, and $b = B$, then the identity
follows by hypothesis.
Next, observe that $A \cap (X - B) = A -
(A \cap B)$ and $(A \cap B) \subset A$ so
$\mu (X) < \infty$ allows us to deduce:
\[
\begin{aligned}
\mu (A \cap (X - B)) &= \mu (A - (A \cap B)) \\
&= \mu (A) - \mu (A \cap B) \\
&= \mu (A)(1 - \mu (B)) \\
&= \mu (A)\mu (X - A).
\end{aligned}
\] \[
\begin{aligned}
\mu ((X - A) \cap (X - B)) &= 1 - \mu (A \cup B) \\
&= 1 - \mu (A) - \mu (B) + \mu (A \cap B) \\
&= 1 - \mu (A) - \mu (B) + \mu (A)\mu (B) \\
&= (1 - \mu (A))(1 - \mu (B)) \\
&= \mu (X - A)\mu (X - B).
\end{aligned}
\]