\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Operations
Needed by:
Natural Additive Identity
Natural Multiplicative Identity
Links:
Sheet PDF
Graph PDF

Identity Elements

Why

We can construct functions on the ground set of an algebra by fixing an element in the ground set and defining a function which maps elements to the result of the operation applied to the fixed element and the given element.

Definition

Let $(A, +)$ be an algebra. For each $a \in A$, denote by $+_a: A \to A$ the function defined by

\[ +_a(b) = a + b. \]

If $+_a$ is the identity function on $A$ then we call $a$ a left identity element of the algebra.

Similarly, denote by $+^a: A \to A$ the function defined by

\[ +^{a}(b) = b + a. \]

If $+^a$ is the identity function on $A$ then we call $a$ a right identity element of the algebra.

An identity element of the algebra is an element which is both a left and right identity. If the operation commutes, then a left identity and right identities are the same.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view