\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Monotone Classes
Needed by:
Monotone Class Theorem
Links:
Sheet PDF
Graph PDF

Generated Monotone Class

Definition

Suppose $X$ is a set and $\mathcal{C} $ is a set of subsets of $X$. The generated monotone class of $\mathcal{C} $ is the smallest monotone class containing the $\mathcal{C} $. We can show that such monotone class exists and is unique. This is the content of the following proposition.

Suppose $X$ is a set and define the set $\mathcal{G} \in \powerset{X}$ by

\[ \mathcal{G} = \bigcap \Set{\mathcal{C} \subset \powerset{X}}{\mathcal{C} \text{ is a monotone class}} \]

is a monotone class.1

  1. Future editions will include a treatment. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view