\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Set Dualities
Intersection of Empty Set
Needed by:
Family Unions and Intersections
Links:
Sheet PDF
Graph PDF

Generalized Set Dualities

Why

If all sets considered in a union or intersection are subsets of a fixed set, then the union and intersection of any set of sets is well defined. We can then derive generalized version of DeMorgan's laws.1

New notation

Let $E$ denote a set. Let $\mathcal{A} $ denote a set of subsets of $E$. Then define

\[ \bigcup_{A \in \mathcal{A} } A := \bigcup \mathcal{A} , \quad \bigcap_{A \in \mathcal{A} } A := \bigcap \mathcal{A} . \]

In this case we have

$\complement{\cup_{A \in \mathcal{A} } A} = \cap_{A \in A} \complement{A}$.
$\complement{\cap_{A \in \mathcal{A} } A} = \cup_{A \in A} \complement{A}$.

  1. In future editions, this sheet may not exist. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view