\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Multiple Knapsack Problems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Generalized Assignment Problems

Why

We consider a multiple knapsack problem in which different knapscaks have different profits and weights.

Definition

Denote by $[m]$ and $[n]$ the sets $\{1, \dots , m\}$ and $\{1, \dots , n\}$, respectively. Given $p: [m] \times [n] \to \R $, $w: [m] \times [n] \to \R _+$, $c: [m] \to \R _+$, find $x: [m] \times [n] \to \{0,1\}^n$ to

\[ \begin{aligned} \text{maximize} & \quad \textstyle \sum_{i = 1}^m \sum_{j = 1}^{n} p_{ij} x_{ij} \\ \text{subject to} & \quad \textstyle \sum_{j = 1}^n w_{ij}x_{ij} \leq c_i , \quad i = 1, \dots , n\\ & \quad \textstyle \sum_{j = 1}^{n} x_{ij} \leq 1, \quad i = 1, \dots , n \\ & \quad x_{ij} \in \{0,1\} \quad i = 1, \dots , m, j = 1, \dots , n \end{aligned} \]

The above is called a generalized assignment problem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view