\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complex Matrices
Vector Space Isomorphisms
Vector Space Dimensions
Real General Linear Groups
Needed by:
Linear Representations of Groups
Links:
Sheet PDF
Graph PDF

General Linear Groups

Why

We can generalize the real general linear groups to vector spaces over $\C $.

Definition

Suppose $V$ is a vector space over the field $\C $ of complex numbers. The set of isomorphisms of $V$ onto itself is a group, called the general linear group, under the operation of composition. If $V$ has dimension $n$, then the general linear group can be identified with the invertible $n \times n$ complex matrices in the usual way.

Notation

We denote by $GL(V)$ the general linear group of isomorphisms of $V$ onto itself. If $f \in GL(V)$, and $V$ has a finite basis $e_1, \dots , e_n \in V$, then $f$ has corresponding matrix representation $A \in \C ^{n \times n}$ given by

\[ A = \bmat{ f(e_1) & \cdots & f(e_n)}. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view