\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Alphabets
Needed by:
Finite Automata
Regular Languages
Links:
Sheet PDF
Graph PDF

Formal Languages

Definition

Let $\Sigma $ be a finite set (alphabet). A formal language (or language) is a subset of finite-length strings of elements of $\Sigma $.

Examples

Let $\Sigma = \set{0,1}$. Then $\varnothing$ is a language, as are the sets $\set{0, 1}$ and $\set{01, 001, 111, 1101010}$.

Notation

We denote the finite strings of $\Sigma $ by $\str(\Sigma )$. Other common notation is $\Sigma ^*$, which we avoid in these sheets for its collision with adjoints.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view