\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Equations
Real Polynomials
Needed by:
Algebraic Equations
Quadratic Equation Solutions
Links:
Sheet PDF
Graph PDF

First Degree Equations

Why

1

Definition

Suppose $f: \R \to \R $ is a first-order polynomial. In other words, there are coefficients $\alpha , \beta \in \R $, $\alpha \neq 0$, so that $f(x) = \alpha x + \beta $ for every $x \in \R $. Then $f(x) = 0$ is a first degree equation.

We write

\[ \alpha x + \beta = 0 \]

Notice that we can divide through by $\alpha $ to obtain,

\[ x + (\beta /\alpha ) = 0 \]

Solutions

Given a real number $a \in \R $, suppose we want to find $x \in \R $ so that

\[ x + a = 0 \]

Clearly, $x = -a$ is a solution.


  1. Future editions will include, and will likely continue to higher degree equations. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view