\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Products
Sequences
Size of Direct Products
Needed by:
Classifiers
Combinations
Permutations
Links:
Sheet PDF
Graph PDF
Wikipedia

Factorials

Why

We want to count the number of ways of arranging $n$ objects in order.

Definition

By the fundamental principle of counting, there are $n$ ways to select the first card, $n-1$ ways to select the second, and so on. Thus, the number of ways of stacking $n$ cards in a deck is

\[ n(n-1)(n-2)\cdots1 \]

We call this number the factorial of $n$, or $n$-factorial.

Factorial function. Define $f: \N \to \N $ recursively by $f(1) = 1$ and $f(2) = 2f(1)$, and $f(n) = nf(n-1)$ for $n \in \N $ ($f$ exists by the the recursion theorem—see Recursion Theorem). $f$ is defined such that $f(n)$ is $n$ factorial, for which reason we call $f$ the factorial function. For convenience, we extend $f$ to $\omega $1 by defining $f(0) = 1$.

Notation

We denote the factorial of $n$ by $n!$, read aloud “n factorial”. So for example, $5! = 5\cdot 4\cdot 3\cdot 2\cdot 1$ and $0! = 1$.


  1. See Natural Numbers. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view