\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Tail Measure Upper Bound
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Expectation Deviation Upper Bound

Why

We bound the probability that a random variance deviates from its mean using its variance.

Result

Suppose $f: \Omega \to \R $ is measurable on the probability space $(\Omega , \mathcal{F} , P)$. Then

\[ P[\abs{f - \E (f)} \geq t] \leq \frac{\var f}{t^2} \quad \text{ for all } t > 0 \]

The symbols $\abs{f - \E (f)} \geq t$ denote the set $\Set*{x \in X}{ \abs{f(x) - \E (f)} \geq t}$. This set is the same as the set

\[ \Set*{x \in X}{({f(x) - \E (f)})^2 \geq t^2}. \]

By using the tail measure upper bound,

\[ P(\Set*{x \in X}{({f(x) - \E (f)})^2 \geq t^2}) \leq \frac{\E (f - \E (f))^2}{t^2}. \]

We recognize the numerator of the right hand side as the variance of $f$.

The above is also called Chebychev’s Inequality (or the Chebyshev inequality).

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view