\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Dual Vector Spaces
Continuous Linear Functionals
Complete Normed Spaces
Needed by:
Inner Product Linear Functional Representations
Links:
Sheet PDF
Graph PDF

Dual Spaces

Why

Take a vector space, and consider the set of continuous linear functionals on that space. Given a suitable norm, this space is a complete normed space.

Defining result

Let $(V, \norm{\cdot })$ be a normed space. The set $\dual{V}$ of all continuous linear functionals on $V$ is a complete normed space with respect to pointwise algebraic operations and norm $\dnorm{\cdot }: V \to \R $ defined by

\[ \dnorm{F} = \underset{x \in V, \;\norm{x} \leq 1}{\sup} \abs{F(x)}. \]

We argue (1) $\dual{V}$ is a vector space, (2) $\dnorm{\cdot }$ is a norm, and (3) $(V, \dnorm{\cdot })$ is complete.1

We call $(\dual{V}, \dnorm{\cdot })$ the dual space (or conjugate space, conjugate dual, or Banach dual of $V$). Notice that $(\dual{V}, \dnorm{\cdot })$ is complete regardless of whether the original normed space $(V,\norm{\cdot })$ is complete.

Basic dual norm property

Notice that the dual norm satisfies a familiar property.

For any vector $x$ in a normed space $(V, \norm{\cdot })$ and any continuous linear functional $F$ on $E$,

\[ \abs{F(x)} \leq \dnorm{F}\norm{x}. \]

If $x = 0$, then $\norm{x} = 0$ and $F(x) = 0$ ($F$ is linear). Otherwise, $x/\norm{x}$ is a unit vector and so

\[ \dnorm{F} \geq \abs{F(x/\norm{x})} = \frac{\abs{F(x)}}{\norm{x}}. \]

where the inequality is from the definition of $\dnorm{\cdot }$ (as a supremum) and the equality follows from the linearity of $F$.

  1. Future editions will include an account. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view