\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Parameterized Distribution Graphs
Maximum Likelihood Distributions
Needed by:
Maximum Likelihood Distribution Graphs
Links:
Sheet PDF
Graph PDF

Distribution Graph Selectors

Why

We want to select a distribution graph to summarize some data.

Definition

Let $(G, A)$ be a typed graph on $\set{1, \dots , n}$. Let $S \subset \set{1, \dots , n}$. Let $x^1, \dots , x^n$ be a dataset in $A_S = \prod_{j \in S} A_j$ (see \sheetref{function_graphs}{Function Graphs}).

A distribution graph selector for typed graph $(G, A)$, dataset of size $n$, and indices $S \subset\set{1, \dots , n}$ is a function from datasets of size $n$ in $A_S$ to distribution graphs on $(G, A)$.

In the case that $S \neq\set{1, \dots , n}$ we call $S$ the observable (or data) indices and $T = \set{1,\dots ,n} \setminus S$ the hidden (or latent, nonobservable) indices. It is common for many authorities to use the notational convention $Z$ for $A_T$ and $X$ for $A_S$.

Let $p: \prod_{i} A_i \to [0, 1]$ denote the full joint distribution of a distribution graph. In this case, we call $p_{S}: A_S \to [0, 1]$ the observable distribution (or evidence distribution).

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view