We want to quantify the error of compressing a real-valued random variable.
Let $\mathcal{X} $ be a finite set and $q: \R \to \mathcal{X} $ a quantization (see Quantizations) of $\R $. Also, fix a probability space $(\Omega , \mathcal{A} , \mathbfsf{P} )$ and a random variable $x: \Omega \to \R $.
The compression $\hat{x}:
\Omega \to \mathcal{X} $ of $x$ under $q$ is
$q \circ x$.
A distortion function for
$x$ and $\hat{x}$ is a function
\[
d: (\Omega \to \R ) \times (\Omega \to \mathcal{X} ) \to
\R .
\]
The expected mean-squared-error
distortion $d_{\text{mse}}$ between $x$ and
$\hat{x}$ is
\[
d_{\text{mse}}(x, \hat{x}) = \E [(x - \hat{x})^2]
\] \[
d_{\text{kld}}(x, \hat{x}) = \E [d_{\text{kl}}(\mathbfsf{P} (y \in
\cdot \mid x, \hat{x}) \mid \mathbfsf{P} (y \in \cdot
\mid \hat{x}))]
\]