\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Differentiable Functions
Equations
Needed by:
Autonomous Continuous-Time Linear Dynamical Systems
Physical Models
Links:
Sheet PDF
Graph PDF

Differential Equations

Why

We want to model physical phenomena.

Definition

A differential equation is an equation relating functions and their derivatives.

Basic example

For example, let $f: \R \to \R $ be differentiable everywhere and denote the derivative of $f$ by $f': \R \to \R $. Suppose that there exists $\alpha \in \R $ so that for all $x \in \R $,

\[ f'(x) = \alpha f(x). \]

Solutions

The solution of a differential equation is a function (or functions) which satisfy the equation.1


  1. Future editions will expand. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view