\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Metric Limits
Needed by:
Metric Completions
Links:
Sheet PDF
Graph PDF

Dense Sets

Definition

Consider a metric space. A subset of the base set is dense in the base set if every element of the base set is the limit of elements in the subset.

Notation

Let $(A, d)$ be a metric space. Let $B \subset A$. Then $B$ is dense in $A$ if for each $a \in A$ there exists $\seq{b}$ in $B$ so that $\seqt{b} \to a$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view