\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Cumulative Distribution Functions
Uniform Densities
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Cumulative Distribution Function Inverse Transform

Result

This result is called sometimes called the probability inverse transform.

Let $(\Omega , \mathcal{F} , \mathbfsf{P} )$ be a probability space and let $X: \Omega \to \R $ be a random variable with cumulative distribution function $\rvcdf{X}: \R \to [0, 1]$. Suppose $\inv{\rvcdf{X}}: [0, 1] \to \R $ exists, then $Y = \inv{\rvcdf{X}} \circ X$ is a random variable with cumulative distribution function $\rvcdf{Y}: [0, 1] \to [0, 1]$ satisfying $\rvcdf{Y}(y) = y$.
The conclusion is equivalent to the following: $Y$ has a density and that density is the the standard unform density (see \sheetref{uniform densities}{Uniform Densities}).
Express $\rvcdf{Y}(\gamma ) = \mathbfsf{P} [Y \leq \gamma ] = \mathbfsf{P} (\inv{Y}([0, \gamma ]))$ Notice1

\[ \begin{aligned} Y^{-1}([0, \gamma ]]) &= \Set{\omega \in \Omega }{Y(\omega ) \leq \gamma } \\ &= \Set{\omega \in \Omega }{\rvcdf{X}(X(\omega )) \leq \gamma } \\ &= \Set{\omega \in \Omega }{X(\omega ) \leq \rvcdf{X}^{-1}(\gamma )}. &= X^{-1}(\cdots). \end{aligned} \]

Using different notation the above can be expressed succinctly as

\[ \begin{aligned} \rvcdf{Y}(\gamma ) = \mathbfsf{P} [Y \leq \gamma ] &= \mathbfsf{P} [\rvcdf{X} \circ X \leq \gamma ] \\ &= \mathbfsf{P} [X \leq \inv{\rvcdf{X}}(\gamma )] = \rvcdf{X}(\inv{\rvcdf{X}}(\gamma )) = \gamma . \end{aligned} \]

Future editions will discuss inverse transform sampling.


  1. Future editions will complete. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view