This result is called sometimes called the probability inverse transform.
\[ \begin{aligned} Y^{-1}([0, \gamma ]]) &= \Set{\omega \in \Omega }{Y(\omega ) \leq \gamma } \\ &= \Set{\omega \in \Omega }{\rvcdf{X}(X(\omega )) \leq \gamma } \\ &= \Set{\omega \in \Omega }{X(\omega ) \leq \rvcdf{X}^{-1}(\gamma )}. &= X^{-1}(\cdots). \end{aligned} \]
\[ \begin{aligned} \rvcdf{Y}(\gamma ) = \mathbfsf{P} [Y \leq \gamma ] &= \mathbfsf{P} [\rvcdf{X} \circ X \leq \gamma ] \\ &= \mathbfsf{P} [X \leq \inv{\rvcdf{X}}(\gamma )] = \rvcdf{X}(\inv{\rvcdf{X}}(\gamma )) = \gamma . \end{aligned} \]
Future editions will discuss inverse transform sampling.