\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Probability Densities
Cumulative Distribution Functions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Cumulative Distribution Function From Density

Why

The density of a random variable determines the cumulative distribution function.

Result

A probability density function of a random variable, if it exists, characterizes the cumulative distribution function.
Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $f$ be a real-valued random variable on $X$. Let $\lambda $ denote the cover length. Let $g$ be a probability density of $f$: Then:

\[ \begin{aligned} \rvcdf{f}(t) &= \mu (\Set*{x \in X}{f(x) \in (-\infty, t])}) \\ &= \int_{(-\infty, t]} gd\lambda . \end{aligned} \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view