\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrices
Multivariate Real Densities
Covariance
Needed by:
Rooted Tree Linear Cascades
Links:
Sheet PDF
Graph PDF

Covariance Matrix

Definition

Suppose $(\Omega , \mathcal{F} , \mathbfsf{P} )$ is a probability space and $x: \Omega \to \R ^n$ is a random vector. The covariance matrix of $x$ is the matrix $A \in \R ^{n \times n}$ defined by

\[ A_{ij} = \cov(x_i, x_j) \quad \text{for all } i, j = 1, \dots , n \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view