\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real-Valued Random Variable Variance
Needed by:
Affine MMSE Estimators
Covariance Matrix
Probabilistic Errors Linear Model
Reproducing Kernels
Standard Deviation
Links:
Sheet PDF
Graph PDF

Covariance

Definition

The covariance between two random variables which are each integrable and whose product is integrable is the expectation of their product less the product of their expectation.

Notation

Let $f$ and $g$ be two integrable random variables with $fg$ integrable. Denote the covariance of $f$ with $g$ by $\cov(f, g)$. We defined it:

\[ \cov(f, g) = \E (fg) - \E (f)\E (g). \]

Properties

Covariance is symmetric and billinear.
The covariance of a random variable with itself is its variance.
Let $f$ be a square-integrable real-valued random variable, then

\[ \cov(f, f) = \E (ff) - \E (f)\E (f) = \E (f^2) - (\E (f))^2 = \var(f). \]

The variance of a sum of integrable real-valued random variables whose pairwise products are integrable is the double sum of the pairwise covariances.
Let $f_1, \dots , f_n$ be integrable random variables with $f_if_j$ integrable for all $i,j = 1, \dots , n$. Using the billinearity,

\[ \begin{aligned} \textstyle \var \sum_{i = 1}^{n} f_i &= \cov(\sum_{i = 1}^{n} f_i, \sum_{i = 1}^{n}f_i) \\ &= \sum_{i = 1}^{n} \sum_{j = 1}^{n} \cov(f_i, f_j) \end{aligned} \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view