\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Convex Multivariate Functions
Vectors
Norms
Convex Sets
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Convex Functions

Why

We generalize convex functions to arbitrary vector spaces.

Definition

Suppose $X$ is a vector space over $\R $, $D \subset X$ and $f: D \to \Rbar$. As before, define

\[ \epi f = \Set{(x, \alpha ) \in X \times \R }{f(x) \leq \alpha } \]

$f$ is convex if $\epi f$ is convex. It is straightforward that $f$ is convex if and only if

\[ f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \]

for all $t \in [0,1]$ and $x,y \in D$.

Examples

Any norm on $X$ is a convex function.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view