\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Relations
Needed by:
Comparisons
Inverses of Composite Relations
Links:
Sheet PDF
Graph PDF

Converse Relations

Why

If $x$ is related to $y$, then $y$ is related to $x$, but how?

Definition

If $R$ is a relation between $X$ and $Y$, then the converse or inverse relation of $R$ is a relation on $Y$ and $X$ relating $y \in Y$ to $x \in X$ if and only if $x\,R\,y$. If $R = R^{-1}$ then $R$ is symmetric.

Notation

We denote the converse relation of $R$ by $R^{-1}$.

Example

Let $X$ be the set of people and let $R$ be a relation in $X$. If $R$ is “is a father of”, then $R^{-1}$ is “is a son of”. If $R$ is “is a mother of”, then $R^{-1}$ is “is a daughter of”. If $R$ is “is a brother of”, then $R^{-1}$ is “is a brother of”. The relation “is a brother of” is symmetric.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view