\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Limits
Convergence In Measure
Absolute Value
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Convergence In Probability

Why

Laws of large numbers.

Definition

A sequence of random variables convergences in probability if it converges in measure.

Notation

Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $\seq{f}$ a sequence of real-valued measurable functions on $X$. Let $f: X \to R$ be measurable function. If $f_n$ converges in measure to $f$ we write: $f_n \goesto f$ in probability, read aloud as “f n goes to f in probability.”

Suppose $f_n \goesto f$ in probability. Then for every $\epsilon > 0$,

\[ \lim_{n \to \infty} \mu (\Set*{x \in X}{\abs{f_n(x) - f(x)} > \epsilon }) = 0. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view