\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Autonomous Continuous-Time Linear Dynamical Systems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Continuous-Time Linear Dynamical Systems with Inputs and Outputs

Definition

A continuous-time time-invariant linear dynamical system is a tuple $(A, B, C, D)$ where $A \in \R ^{n \times n}$, $B \in \R ^{n \times m}$, $C \in \R ^{k \times n}$ and $D \in \R ^{k \times m}$. Given an input $u: \R \to \R ^m$, it models a state $x: \R \to \R ^n$ and output $y: \R \to \R ^k$ by

\[ \begin{aligned} \dot{x} &= Ax + Bu, \\ y &= Cx + Du. \end{aligned} \]

Here $Ax$ is called the drift term and $Bu$ is called the input term (of $\dot{x}$).

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view