\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Set Partitions
Needed by:
Sheet PDF
Graph PDF

Contingency Tables


We want to summarize the interaction between two binary traits.


The contingency table of a population $\set{1,\dots ,n}$ with respect to binary traits $a, b : \upto{n} \to \set{0,1}$ is the array $A \in \N ^{2 \times 2}$ of natural numbers defined by

\[ A = \barray{ \num{a^{-1}(0) \cap b^{-1}(0)} & \num{a^{-1}(0) \cap b^{-1}(1)} \\ \num{a^{-1}(1) \cap b^{-1}(0)} & \num{a^{-1}(0) \cap b^{-1}(1)} }. \]

We interpret $A_{11}$ as the number of individuals which have neither trait, $A_{12}$ as the individuals which have trait $b$ but not trait $a$, and so on.


These four sets partition $\upto{n}$, so that if we divide the elements by $n$, we obtain four numbers which sum to 1, the 2 by 2 table with these entries is called the normalized contingency table.

Contingency arrays

In general, we have $k$ binary traits, each of which an individual may or may not have. We encode these traits using $k$ functions

\[ a_1, \dots , a_k: \upto{n} \to \set{0,1}. \]

The contingency array is $k$-dimensional array $A$, with

\[ A_x = \cap _{j = 1}^{k} a_j^{-1}(x_j), \]

where $x \in \set{0,1}^k$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view