\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Inner Products
Complex Numbers
Needed by:
Complete Inner Product Spaces
Inner Products
Links:
Sheet PDF
Graph PDF

Complex Inner Products

Why

What is an inner product if we take a vector space over the complex numbers.

Definition

An inner produce over a complex vector space is positive definite, Hermitian, and linear in the first argument.

Notation

Let $(V, \C )$ be a complex vector space. Let $f: V \times V \to C$ be a function such that

  1. $f(x, x) \geq 0$, $f(x, x) = 0 \Leftrightarrow x = 0$;
  2. $f(x, y) = \overline{f(y, x)}$
  3. $f(ax + by, z) = a(x, z) + b(y, z)$

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view