\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Inner Product
Complex Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Complex Inner Product

Definition

The complex inner product (or dot product, scalar product) of two complex vectors $x, y \in \C ^n$ is

\[ x_1y_1 + x_2y_2 + \cdots + x_ny_n \]

We denote the inner product of $x$ and $y$ by $\ip{x,y}$.

An inner product space is tuple whose first object is a vector space over the real or complex numbers and whose second object is a conforming inner product.

Other terminlogy

Some older authors use the term pre-Hilbert space.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view