\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Exponential Function
Complex Arithmetic
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Complex Exponential

Definition1

The complex exponential of a complex number $z \in \C $ is the complex number

\[ 1 + z + \frac{z^2}{2} + \frac{z^3}{3!} + \cdots = \sum_{n = 1}^{\infty}\frac{z^n}{n!}. \]

Notation

We denote the complex exponential funciton $\exp: \C \to \C $, and so denote the complex exponential of $z \in \C $ by $\exp(z)$, as usual. This overloaded notation is justified by the fact that the complex exponential agrees with the real exponential function on reals. It is also common to denote $\exp(z)$ by $e^z$.

Relation to power series of $\sin$ and $\cos$

It can be shown that

\[ \exp(ix) = \cos(x) + i \sin(x) \quad \text{for all } x \in \R \]


  1. Future editions may modify this sheet, as there are several (equivalent) characterizations of the complex exponential function. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view