\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complex Plane
Plane Distance
Norm Metrics
Needed by:
Complex Conjugates and Moduli
Complex Discs
Complex Integrals
Complex Limits
Links:
Sheet PDF
Graph PDF

Complex Distance

Why

The identification of $\C $ with a plane leads $\C $ to naturally inherit $\R ^2$'s notion of distance.

Definition

The absolute value or modulus of $z = (x, y) \in \C $ is the distance of $z$ to the origin. If $z \in \C $, then the modulus of $z$ is

\[ \sqrt{x^2 + y^2}. \]

In other words, the modulus of $z$ is the distance (in $\R ^2$ of $z = (x,y)$ from the origin $(0,0)$.

Notation

We denote the modulus of $z$ by $\Cmod{z}$.

Properties

For all $z, w \in \C $,

\[ \Cabs{z + w} \leq \Cabs{z} + \Cabs{w}. \]

Also, for all $z \in \C $, we have $\Cabs{\Re (z)} \leq \Cabs{z}$ and $\Cabs{\Im (z)} \leq \Cabs{z}$, and for all $z, w \in \C $,1

\[ \Cabs{\Cabs{z} - \Cabs{w}} \leq \Cabs{z - w}. \]


  1. This follows from the triangle inequality. Future editions will include an account. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view