How do the modulus and conjugate of a complex number relate?
Recall that $z = x + iy$ means that $\Cconj{z} = x - iy$ and so \[ z\bar{z} = (x + iy)(x - iy) = x^2 + y^2 = \Cmod{z}^2. \]
\[ z\bar{z} = (x + iy)(x - iy) = x^2 + y^2 = \Cmod{z}^2. \]