\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complex Plane
Needed by:
Adjoints of Linear Transformations
Complex Conjugates and Moduli
Links:
Sheet PDF
Graph PDF

Complex Conjugates

Definition

The complex conjugate (or conjugate) of a complex number $z$ is the complex number whose real part matches $z$ and whose imaginary part is the additive inverse of $z$. The complex conjugate of a purely real number is the same purely real number. In other words, the complex conjugate of a complex number with no imaginary part is the same complex number.

Notation

We denote the complex conjugate of the complex number $z \in \C $ by $\Cconj{z}$. Other common notation includes $\bar{z}$, read “z bar”. If there exists $a, b \in \R $ so that $z = (a, b)$, then $\Cconj{z} = (a, -b)$.

Geometric interpretation

Taking the conjugate of a complex numbers corresponds to a reflection across the real axis in the plane.

Properties

A complex number $z$ is real if and only if $z = \Cconj{z}$ and it is imaginar if and only if $z = -\Cconj{z}$.

For $z \in \C $, we have

\[ \Re (z) = \frac{z + \Cconj{z}}{2} \quad \text{ and } \Im (z) = \frac{z - \Cconj{z}}{2i}. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view