\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complex Products
Needed by:
Complex Exponential
Complex Matrices
Links:
Sheet PDF
Graph PDF

Complex Arithmetic

Why

We want to add and multiply complex numbers.1

Definition

Let $z_1, z_2 \in \C $ with $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$. The complex product of $z_1$ and $z_2$ is the complex number $(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$.

Properties

For all $z_1, z_2, z_3 \in \C $, we have $z_1(z_2 + z_3)$ and $z_1z_2 + z_1z_3$

Relaton to $\R ^2$

Addition in $\C $ corresponds to the usual addition of the corresponding vectors in the plane $\R ^2$. In other words, it corresponds to element-wise addition. However multiplication in $\C $ is not componentwise multiplication in $\R ^2$.


  1. Future editions will expand in the genetic account for introducing complex numbers. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view