\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complete Real Inner Product Spaces
Complex Inner Products
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Complete Inner Product Spaces

Definition

Let $(X, \F )$ be a vector space where $\F $ is $\R $ or $\C $. An inner product $\ip{\cdot ,\cdot }: X \times X \to \R $ induces a norm $\norm{\cdot }: X \to \R $ defined by $\norm{x} = \sqrt{\ip{x,x}}$ and metric $d: X \times X \to \R $ defined by $d(x, y) = \norm{x - y}$.

If $(X, d)$ is a complete metric space, we call $((X, \F ), \ip{\cdot ,\cdot })$ a complete inner product space (or Hilbert space).1


  1. The term Hilbert space is universal, but in accordance with the Bourbaki project’s guidelines on naming, we will tend to use the term complete inner product space, even though this is longer. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view